June 7th, 2016

Reserving and Capital Setting: Sizing the Problem, Part III: Quantifying Emerging Risks; Expert Judgement

Posted at 1:00 AM ET

Data quality and availability should also be examined in depth. Because the risks are new, the data may not be captured correctly to power the model, which will lead to further uncertainty and may even preclude the use of a model altogether.

There will be risks on the list for which there is no data and no available model. This absence of information does not mean the industry can just ignore these risks, particularly if they are highly ranked in terms of materiality. Companies do not need to resort to “finger in the air” estimates when they can leverage expert judgment. The use of expert judgment has become much more robust in recent years with the advent of Structured Expert Judgment (SEJ). In fact, SEJ has been used for quantifying many hard to analyze risks such as estimating the probability of volcanic eruptions and cyber aggregations. The process involves taking a panel of experts through a series of interviews to get loss scenarios and estimates of loss quantum and likelihood. These results are used as data points to create a pseudo probable maximum loss curve which will have a mean estimate for each scenario and also provide a range of estimates which can inform uncertainty.

When it comes to casualty catastrophes or indeed any emerging risk that can be systemic in its effects, it is crucial to consider correlations and dependencies. This is where past data again is not always that useful. While events from emerging risks are scarce in past data for individual lines of business, the instances of a conflagration across lines of business in terms of liability with a simultaneous impact on assets are virtually non-existent. Whatever dependency structure is assumed within an external model or the internal capital model (whether copula-based, using correlation matrices or a risk driver approach) it should be capable of being stressed to reflect that the future could be more unusual than the past.

The key issue in modeling is the timescale over which we realize that the risk is manifesting itself and how this view changes until an ultimate understanding of the loss quantum is reached and all liabilities are discharged. This is the missing dimension from most models but why does it matter? Well, for a natural catastrophe the event usually happens quickly, can be estimated fast and is settled swiftly. An emerging or latent risk can lurk in the balance sheet undiscovered for a long time. Even when discovered it can take even longer to comprehend the full extent of the loss. The best historic example is the liability from exposure to asbestos. The reserves have crept up and up, been impacted by various judicial decisions and are still not fully concluded in many cases and jurisdictions. It could be presumed that as long as there is an estimate about the potential overall quantum of loss, and capital is held to back that ultimate liability at inception, then it should not really matter whether the realization of the loss is tomorrow or 20 years in the future. But, that would be wrong as we will explain.

Link to Part I>>

Link to Part II>>

Click here to register to receive e-mail updates>>

AddThis Feed Button
Bookmark and Share

Related Posts